Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Engine and Emissions Performance of Renewable Diesel in a Heavy-Duty Diesel Engine: A Single-cylinder Engine Experiment

2023-04-11
2023-01-0273
As an alternative fuel, renewable diesel (RD) could improve the performance of conventional internal combustion engines (ICE) because of its difference in fuel properties. With almost no aromatic content in the fuel, RD produces less soot emissions than diesel. The higher cetane number (CN) of RD also promotes ignition of the fuel, which is critical, especially under low load, and low reactivity conditions. This study tested RD fuel in a heavy-duty single-cylinder engine (SCE) under compression-ignition (CI) operation. Test condition includes low and high load points with change in exhaust gas recirculation (EGR) and start of injection (SOI). Measurements and analysis are provided to study combustion and emissions, including particulate matters (PM) mass and particle number (PN). It was found that while the combustion of RD and diesel are very similar, PM and PN emissions of RD were reduced substantially compared to diesel.
Technical Paper

Evaluation of Indrio’s Ammonia Sensor using a Diesel Fuel Based Burner Platform

2023-04-11
2023-01-0383
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement.
Technical Paper

An Update on Continuing Progress Towards Heavy-Duty Low NOX and CO2 in 2027 and Beyond

2023-04-11
2023-01-0357
Despite considerable progress towards clean air in previous decades, parts of the United States continue to struggle with the challenge of meeting the ambient air quality targets for smog-forming ozone mandated by the U.S. EPA, with some of the most significant challenges being seen in California. These continuing issues have highlighted the need for further reductions in emissions of NOX, which is a precursor for ozone formation, from a number of key sectors including the commercial vehicle sector. In response, the California Air Resources Board (CARB) embarked on a regulatory effort culminating in the adoption of the California Heavy-Duty Low NOX Omnibus regulation.[1] This regulatory effort was supported by a series of technical programs conducted at Southwest Research Institute (SwRI).
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Journal Article

Demonstration of Ego Vehicle and System Level Benefits of Eco-Driving on Chassis Dynamometer

2023-04-11
2023-01-0219
Eco-Driving with connected and automated vehicles has shown potential to reduce energy consumption of an individual (i.e., ego) vehicle by up to 15%. In a project funded by ARPA-E, a team led by Southwest Research Institute demonstrated an 8-12% reduction in energy consumption on a 2017 Prius Prime. This was demonstrated in simulation as well as chassis dynamometer testing. The authors presented a simulation study that demonstrated corridor-level energy consumption improvements by about 15%. This study was performed by modeling a six-kilometer-long urban corridor in Columbus, Ohio for traffic simulations. Five powertrain models consisting of two battery electric vehicles (BEVs), a hybrid electric vehicle (HEV), and two internal combustion engine (ICE) powered vehicles were developed. The design of experiment consisted of sweeps for various levels of traffic, penetration of smart vehicles, penetration of technology, and powertrain electrification.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Technical Paper

Challenges and Opportunities with Direct-Injection Hydrogen Engines

2023-04-11
2023-01-0287
Stringent emissions regulations and the need for lower tailpipe emissions are pushing the development of low-carbon alternative fuels. H2 is a zero-carbon fuel that has the potential to lower CO2 emissions from internal combustion engines (ICEs) significantly. Moreover, this fuel can be readily implemented in ICEs with minor modifications. Batteries can be argued to be a good zero tailpipe emission solution for the light-duty sector; however, medium and heavy-duty sectors are also in need of rapid decarbonization. Current strategies for H2 ICEs include modification of the existing spark ignition (SI) engines to run on port fuel injection (PFI) systems with minimal changes from the current compressed natural gas (CNG) engines. This H2 ICE strategy is limited by knock and pre-ignition. One solution is to run very lean (lambda >2), but this results in excessive boosting requirements and may result in high NOx under transient conditions.
Technical Paper

A New Methodology for Comparing Knock Mitigation Strategies and Their Stability Margin

2023-04-11
2023-01-0248
The automotive sector is rapidly transitioning to decarbonized, electric vehicles solutions. However, due to challenges with such rapid adoption, Internal combustion engines (ICE) are expected to be used for decades to come. In this transition period it is important to continue to improve ICE efficiency. A key design parameter to increase ICE efficiency is the compression ratio. For gasoline engines, the compression ratio is limited so as to avoid knock. Engine designers can employ several strategies to mitigate knock and enable higher compression ratios. In this study, a new methodology has been developed to compare various knock mitigation strategies. By comparing the knock limited load at a given combustion phasing the expected compression ratio increase can be inferred.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Greenhouse Gas Reduction from EnviroKool Piston in Lean Burn Natural Gas and Diesel Dual Fuel Heavy Duty Engine

2022-06-14
2022-37-0004
Heavy-duty (HD) internal combustion engines (ICE) have achieved quite high brake thermal efficiencies (BTE) in recent years. However, worldwide GHG regulations have increased the pace towards zero CO2 emissions. This, in conjunction with the ICE reaching near theoretical efficiencies means there is a fundamental lower limit to the GHG emissions from a conventional diesel engine. A large factor in achieving lower GHG emissions for a given BTE is the fuel, in particular its hydrogen to carbon ratio. Substituting a fuel like diesel with compressed natural gas (CNG) can provide up to 25% lower GHG at the same BTE with a sufficiently high substitution rate. However, any CNG slip through the combustion system is penalized heavily due to its large global warming potential compared to CO2. Therefore, new technologies are needed to reduce combustion losses in CNG-diesel dual fuel engines.
Technical Paper

Demonstration of Energy Consumption Reduction in Class 8 Trucks Using Eco-Driving Algorithm Based on On-Road Testing

2022-03-29
2022-01-0139
Vehicle to Everything (V2X) communication has enabled on-board access to information from other vehicles and infrastructure. This information, traditionally used for safety applications, is increasingly being used for improving vehicle fuel economy [1-5]. This work aims to demonstrate energy consumption reductions in heavy/medium duty vehicles using an eco-driving algorithm. The algorithm is enabled by V2X communication and uses data contained in Basic Safety Messages (BSMs) and Signal Phase and Timing (SPaT) to generate an energy-efficient velocity trajectory for the vehicle to follow. An urban corridor was modeled in a microscopic traffic simulation package and was calibrated to match real-world traffic conditions. A nominal reduction of 7% in energy consumption and 6% in trip time was observed in simulations of eco-driving trucks.
Technical Paper

Reduced Power Cylinder Friction with Advanced Coatings and Optimized Lubricants

2022-03-29
2022-01-0523
The engine power cylinder is comprised of the piston, piston rings, and cylinder. It accounts for a significant amount of total engine friction within reciprocating, internal combustion engines. Reducing power cylinder friction is key to the development of efficient internal combustion engines. However, isolating individual power cylinder tribocouples for detailed analysis can be challenging. In this work, a new reciprocating liner test rig is developed and introduced. The rig design is novel, using a stationary piston and a reciprocating cylinder liner. Friction is calculated from the force measured in the connecting rod which supports the piston. The rig allows for independent control of peak cylinder pressure, speed, and lubricant temperature. Using the newly developed test rig, several technologies for friction reduction are evaluated and compared.
Technical Paper

Quantifying System Level Impact of Connected and Automated Vehicles in an Urban Corridor

2022-03-29
2022-01-0153
Numerous studies have demonstrated significant energy reduction for an ego vehicle by up to 20% leveraging Vehicle-to-Everything (V2X) technologies [1-4]. Some studies have also analyzed the impact of such vehicles on the energy consumption of other vehicles in a suburban or a highway corridor [5, 6], but the impact in an urban setting has not been studied yet. Southwest Research Institute (SwRI), in collaboration with Continental and Hyundai, is currently working on a Department of Energy funded project that is focused on quantifying the impact of multiple ego vehicles (smart vehicles) on the total energy consumption of the corridor under various traffic conditions, vehicle electrification level, vehicle-to-vehicle (V2V) technology penetration, and the number of smart (ego) vehicles in an urban setting. A six-kilometer-long urban corridor from Columbus, Ohio was modeled and calibrated with real-world data in PTV Vissim traffic microsimulation software.
Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Technical Paper

Advanced Tire to Vehicle Connectivity for Safety and Fuel Economy of Automated Heavy-Duty Trucks

2022-03-29
2022-01-0881
Safety, fuel economy and uptime are key requirements for the operation of heavy-duty line-haul trucks within a fleet. With the penetration of connectivity and automation technologies, energy optimal and safe operation of the trucks are further improved through Advanced Driver Assistance System (ADAS) features and automated technologies as in truck platooning. Understanding the braking capability of the vehicle is very important for optimal ADAS and platooning control system design and integration. In this paper, the importance of tire connectivity and tire conditions on truck stopping distance are demonstrated through testing. The test data is further utilized to develop tire models for integration in an optimal vehicle automation for platooning. New ways to produce and use the tire related information in real-time optimal control of platooning trucks are proposed and the contribution of tire information in fuel economy is quantified through simulations.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Journal Article

Meeting Future NOX Emissions Over Various Cycles Using a Fuel Burner and Conventional Aftertreatment System

2022-03-29
2022-01-0539
The commercial vehicle industry continues to move in the direction of improving brake thermal efficiency while meeting more stringent diesel engine emission requirements. This study focused on demonstrating future emissions by using an exhaust burner upstream of a conventional aftertreatment system. This work highlights system results over the low load cycle (LLC) and many other pertinent cycles (Beverage Cycle, and Stay Hot Cycle, New York Bus Cycle). These efforts complement previous works showing system performance over the Heavy-Duty FTP and World Harmonized Transient Cycle (WHTC). The exhaust burner is used to raise and maintain the Selective Catalytic Reduction (SCR) catalyst at its optimal temperature over these cycles for efficient NOX reduction. This work showed that tailpipe NOX is significantly improved over these cycles with the exhaust burner.
X